Successful Practices and Challenges in Implementing Fair Principles for Academic Libraries
DOI:
https://doi.org/10.15802/unilib/2025_343173Keywords:
FAIR principles, research data management, open science, university libraries, implementation challenges, international practicesAbstract
Objective. This study analyzes international experiences in implementing the FAIR principles (Findability, Accessibility, Interoperability, Reusability) in research data management in university environments. Methods. A comprehensive methodological approach was used, including a systematic literature review of the publications of 2020-2024, case studies of best practices from leading European and American universities, expert interviews with university library data management specialists, and analysis of institutional policies and regulatory documents. Results. The analysis revealed significant variability in FAIR implementation levels depending on geographical location, institutional policies, cultural factors, technical infrastructure, and the specificities of scientific disciplines. Nordic countries and the UK demonstrate leadership in FAIR implementation, while Eastern European countries, including Ukraine, show significantly lower levels of implementation. Natural sciences demonstrate more developed data sharing practices compared to humanities and social sciences. The paper identifies main obstacles to the development of this area of activity in the library environment. Conclusions. Successful implementation of FAIR requires comprehensive approaches, including the development of institutional policies, the creation of specialized infrastructure, raising awareness among researchers, and the development of discipline-specific guidelines to ensure full compliance with FAIR principles.
References
Adams, J., Jones, B., & Foster, H. (2023). Supporting FAIR data management planning across different disciplines at the University of Sheffield. Data Science Journal, 22, Art. 17. doi: https://doi.org/10.5334/dsj-2023-017 (in English)
de Groot, R., van der Graaff, F., van der Doelen, D., Luijten, M., De Meyer, R., Alrouh, H., van Oers, H, ... Polderman, T. J. C. (2024). Implementing findable, accessible, interoperable, reusable (FAIR) principles in child and adolescent mental health research: Mixed methods approach. JMIR Mental Health, 11, Art. e59113. doi: https://doi.org/10.2196/59113 (in English)
Guerrero, C. U., Romero, M. V., Dolman, M., & Dumontier, M. (2023). FAIR begins at home: Implementing FAIR via the community data driven insights. arXiv. doi: https://doi.org/10.48550/arXiv.2303.07429 (in English)
Henning, P., Bonino da Silva, L. O., Pires, L. F., van Sinderen, M., & Moreira, J. L. R. (2021). The FAIRness of data management plans: an assessment of some European DMPs. RECIIS, 15(3), 722-735. doi: https://doi.org/10.29397/reciis.v15i3.2270 (in English)
Hettne, K. M., Verhaar, P., Schultes, E., & Sesink, L. (2020). From FAIR leading practices to FAIR implementation and back: An inclusive approach to FAIR at Leiden University Libraries. Data Science Journal, 19, Art. 40. doi: https://doi.org/10.5334/dsj-2020-040 (in English)
Kersloot, M. G., Abu-Hanna, A., Cornet, R., & Arts, D. L. (2022). Perceptions and behavior of clinical researchers and research support staff regarding data FAIRification. Scientific Data, 9, Art. 241. doi: https://doi.org/10.1038/s41597-022-01325-2 (in English)
Marín-Arraiza, P. (2023). Cuidar de los datos y ser justos con ellos: ¿debemos complementar los principios FAIR con los principios CARE? Anuario ThinkEPI, 17, Art. e17a08. doi: https://doi.org/10.3145/thinkepi.2023.e17a08 (in Spanish)
Namgay, P., Wangdi, P., Thinley, S., & Namgyel, T. (2023). FAIRifying STEM data ecosystem to enhance data reuse. In Proceedings of the 2023 IEEE Frontiers in Education Conference (FIE). IEEE. doi: https://doi.org/10.1109/FIE58773.2023.10343320 (in English)
Petters, J., Taylor, S., Hofelich Mohr, A., Carlson, J., Ge, L., Herndon, J., Kozlowski, W., Moore. J., & Hudson Vitale, C. (2024, March). Publicly shared data: A gap analysis of researcher actions and institutional support throughout the data life cycle. Association of Research Libraries. doi: https://doi.org/10.29242/report.radsgapanalysis2024 (in English)
Pribec, I., Hachinger, S., Hayek, M., Pringle, G. J., Brüchle, H., Jamitzky, F., & Mathias, G. (2023). Efficient and reliable data management for biomedical applications. In: A. Heifetz (Ed.), High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, 2716 (pp. 383-403). New York, NY: Humana. doi: https://doi.org/10.1007/978-1-0716-3449-3_18 (in English)
Stoy, L., Saenen, B., Davidson, J., & Engelhardt, C. (2020). Data for D7.1 FAIR in European higher education. Zenodo. doi: https://doi.org/10.5281/zenodo.3629686 (in English)
Washton, N. M., & Ackerman, C. M. (2023). Understanding technical and psychosocial barriers to realizing FAIR data process (PNNL-34942). Pacific Northwest National Laboratory. Richland, Washington. doi: https://doi.org/10.2172/2203941 (in English)







